COMBINATORICABolyai Society – Springer-Verlag

THE FRACTIONAL CHROMATIC NUMBER OF THE CATEGORICAL PRODUCT OF GRAPHS

CLAUDE TARDIF

Received September 30, 2002

We prove that the identity

$$\chi_f(G \times H) \ge \frac{1}{4} \cdot \min\{\chi_f(G), \chi_f(H)\}\$$

holds for all directed graphs G and H. Similar bounds for the usual chromatic number seem to be much harder to obtain: It is still not known whether there exists a number n such that $\chi(G \times H) \ge 4$ for all directed graphs G, H with $\chi(G) \ge \chi(H) \ge n$. In fact, we prove that for every integer $n \ge 4$, there exist directed graphs G_n , H_n such that $\chi(G_n) = n$, $\chi(H_n) = 4$ and $\chi(G_n \times H_n) = 3$.

1. Introduction

The categorical product $G \times H$ of two directed graphs G and H is the directed graph with vertex-set $V(G) \times V(H)$ and arcs $(u_1, u_2) \to (v_1, v_2)$ for every $u_1 \to v_1$ in G and $u_2 \to v_2$ in H. (Here, we write $u \to v$ to indicate the presence of an arc from u to v.) The product $G \times H$ admits homomorphisms (that is, arc-preserving maps) to both G and H. This allows one to give an upper bound for the fractional chromatic number of $G \times H$ in terms of its factors:

(1)
$$\chi_f(G \times H) \le \min\{\chi_f(G), \chi_f(H)\}.$$

In this paper, we provide the following lower bound:

Theorem 1. For any two directed graphs G and H,

(2)
$$\chi_f(G \times H) \ge \frac{1}{4} \cdot \min\{\chi_f(G), \chi_f(H)\}.$$

Mathematics Subject Classification (2000): 05C15

In [9], we gave examples of n-tournaments S_n , T_n such that $\chi(S_n \times T_n) \simeq \frac{2}{3} \cdot n$. The best possible lower bound for the fractional chromatic number of a product of directed graphs in terms of the the fractional chromatic numbers of the factors will be of the type $\chi_f(G \times H) \ge c \cdot \min\{\chi_f(G), \chi_f(H)\}$, for some c between $\frac{1}{4}$ and $\frac{2}{3}$.

In contrast, it seems very difficult to find meaningful lower bounds for the chromatic number of a product of directed graphs in terms of the chromatic numbers of the factors. Poljak and Rödl [5] introduced the function

$$\phi(n) = \min\{\chi(G \times H) : G, H \text{ are directed graphs and } \chi(G) \ge \chi(H) \ge n\}.$$

It is not even known whether ϕ goes to infinity with n. In [4,11], it is shown that either $\phi(n) = \min\{3, n\}$ for all n, or $\lim_{n\to\infty} \phi(n) = \infty$. In fact the hypothesis that ϕ is bounded by 3 seems plausible in view of our next result:

Theorem 2. Let T_n denote the transitive tournament on n vertices. Then there exists a 4-chromatic directed graph H_n such that $\chi(T_n \times H_n) \leq 3$.

If one used arbitrary graphs for both factors of the categorical product instead of restricting one factor to the relatively small class of transitive tournaments it seems plausible that Theorem 2 could be improved to families of directed graphs $\{G'_n\}_{n\in\mathbb{N}}$, $\{H'_n\}_{n\in\mathbb{N}}$ such that $\chi(G'_n)=n$, $\chi(H'_n)=k$ and $\chi(G'_n\times H'_n)\leq 3$. This holds for all values k if and only if the function ϕ is bounded by 3.

Now undirected graphs can be viewed as symmetric directed graphs (where each edge corresponds to two opposite arcs). Hedetniemi's conjecture states that the bound

(3)
$$\chi(G \times H) \le \min\{\chi(G), \chi(H)\}\$$

is tight for all undirected graphs G, H. This conjecture has attracted a lot of attention; see the recent surveys [6,11]. In [12], the question as to whether the bound (1) is always tight for undirected graphs is discussed. If either of (1), (3) is tight for undirected graphs, then the bound

(4)
$$\chi(G \times H) \ge \min\{\chi_f(G), \chi_f(H)\}\$$

holds for all undirected graphs G, H. In [8] the bound

(5)
$$\chi(G \times H) \ge \frac{1}{2} \min\{\chi_f(G), \chi_f(H)\}\$$

is proved for directed graphs. We note that no improvements on the bounds (2), (5) are known for undirected graphs.

2. Proof of Theorem 2

Let T_n be the transitive tournament with vertex-set 1, ..., n and arcs $x \to y$ such that x < y. Let H_n be the graph with vertex set

$$V(H_n) = \{f_{i,j} : i \in \{0,1,2\}, j \in \{1,2,\ldots,n-1\}\},\$$

where $f_{i,j}$ is the function from $V(T_n)$ to $V(K_3) = \{0,1,2\}$ defined by

$$f_{i,j}(x) = \begin{cases} i \text{ if } x \leq j \\ i \oplus 1 \text{ if } x > j \end{cases}$$

(We denote by \oplus the addition in \mathbb{Z}_3 and by + the addition in \mathbb{N}). The arcs of H_n are the couples $f_{i,j} \to f_{i',j'}$ such that $x \to y$ in T_n implies $f_{i,j}(x) \neq f_{i',j'}(y)$. In other words, $f_{i,j} \to f_{i',j'}$ is an arc of H_n if and only if $i' = i \oplus 1$ and $j' \leq j+1$, or i' = i, j = n-1 and j' = 1.

The first description of the arcs of H_n allows one to exhibit a natural 3-colouring of $T_n \times H_n$: let $c: T_n \times H_n \mapsto \{0,1,2\}$ be defined by $c(x,f_{i,j}) = f_{i,j}(x)$. If $(x,f_{i,j}) \to (y,f_{i',j'})$ in $T_n \times H_n$, then $x \to y$ in T_n and $f_{i,j} \to f_{i',j'}$ in H_n , whence $f_{i,j}(x) \neq f_{i',j'}(y)$; this shows that c is a proper 3-colouring of $T_n \times H_n$.

We use the second description of the arcs of H_n to show that $\chi(H_n) \ge 4$. Suppose that H_n admits a proper 3-colouring $c: H_n \mapsto \{0, 1, 2\}$. Without loss of generality, we can suppose that $c(f_{i,1}) = i$, i = 0, 1, 2. Since $f_{i,j} \to f_{i \oplus 1,1}$, we then have $c(f_{i,j}) \in \{i, i \oplus 2\}$, $j = 1, \ldots, n-1$, and in particular $c(f_{i,n-1}) = i \oplus 2$. For i = 0, 1, 2, put $j_i = \max\{j : c(f_{i,j}) = i\}$; the structure of H_n then implies $j_0 < j_1 < j_2 < j_0$, which is impossible. Therefore, $\chi(H_n) \ge 4$.

3. Proof of Theorem 1

The graph H_n of the previous section is actually a subgraph of the exponential graph $K_3^{T_n}$, whose vertices are all the functions from $V(T_n)$ to $V(K_3)$. In general, for two graphs G and K (directed or undirected), the exponential graph K^G is the graph whose vertices are all the functions from V(G) to V(K), where $f \to g$ if and only if for all $x \to y$ in G, we have $f(x) \to g(y)$ in K.

There is a natural correspondence between the homomorphisms from $G \times H$ to K and the homomorphisms from H to K^G : If $\psi : G \times H \mapsto K$ is a homomorphism, then the map $\hat{\psi} : H \mapsto K^G$ defined by $\hat{\psi}(y) = f_y$, where $f_y(x) = \psi(x,y)$ for all $x \in V(G)$, is also a homomorphism. Conversely, a homomorphism from H to K^G also defines a homomorphism from $G \times H$ to K, as indicated in the proof of Theorem 2. It follows that Hedetniemi's conjecture is equivalent to the statement that for every undirected graph

G such that $\chi(G) > n$, we have $\chi(K_n^G) = n$. For n = 3, this statement is proved in [2]. However, no general bound for $\chi(K_n^G)$ that uses only the high chromaticity of G is known. In particular, proving that there exists a number M such that for every directed graph G, $\chi(G) \geq M$ implies $\chi(K_3^G) \leq M$ is equivalent to proving that the Poljak–Rödl function of the introduction is unbounded. We will see in Section 4 that the fractional version of this problem is much more tractable.

We will use three equivalent definitions of the fractional chromatic number; see [7] for a detailed treatment. Let $\mathcal{I}(G)$ denote the family of all independent sets of a directed graph G. A function $\mu: \mathcal{I}(G) \mapsto [0,1]$ is called a fractional colouring of G if $\sum_{x \in I} \mu(I) \geq 1$ for all $x \in V(G)$. The value $\sum_{I \in \mathcal{I}(G)} \mu(I)$ is called the weight of μ . Also, a function $\nu: V(G) \mapsto [0,1]$ is called a fractional clique of G if $\sum_{x \in I} \nu(x) \leq 1$ for all $I \in \mathcal{I}(G)$. Its weight is $\sum_{x \in V(G)} \nu(x)$. The fractional chromatic number $\chi_f(G)$ of G is the common value of the minimum weight of a fractional colouring of G and the maximum weight of a fractional clique of G. In terms of homomorphisms, the fractional chromatic number can also be defined as follows:

$$\chi_f(G) = \min\{\frac{s}{r} : G \text{ admits a homomorphism to } K(r,s)\},\$$

where K(r,s) is the *Kneser graph* whose vertices are the r-subsets of $\{1,\ldots,s\}$, where $A \to B$ if and only if $A \cap B = \emptyset$.

Let G, H be graphs such that $\chi_f(G \times H) = \rho$ and $\chi_f(G) \ge 4\rho$. To prove Theorem 2 it suffices to show that $\chi_f(H) \le 4\rho$. By definition, $\chi_f(G \times H) = \rho$ implies that there exist integers r, s such that $\frac{s}{r} = \rho$ and $G \times H$ admits a homomorphism to K(r, s). Thus H admits a homomorphism to $K(r, s)^G$ and $\chi_f(H) \le \chi_f(K(r, s)^G)$. We will show that $\chi_f(K(r, s)^G) \le 4\rho$.

For $x \in V(G)$ and $1 \le k \le s$, put

$$I(x,k) = \{ h \in K(r,s)^G : k \in h(x) \cap h(y) \text{ for some } x \to y \text{ in } G \}.$$

If $h \in I(x,k)$ and $h' \to h$ in $K(r,s)^G$, then for some $x \to y$ in G we have $k \in h(y)$, thus $k \notin h'(x)$, and $h' \notin I(x,k)$. This shows that I(x,k) is an independent set.

Let $\nu:V(G)\mapsto [0,1]$ be a fractional clique of weight $\chi_f(G)$. For $x\in V(G)$ and $1\leq k\leq s$, put

$$\mu(I(x,k)) = \frac{4}{r \cdot \chi_f(G)} \nu(x)$$

(and $\mu(I) = 0$ for all other $I \in \mathcal{I}(K(r,s)^G)$). Then $\sum_{I \in \mathcal{I}(K(r,s)^G)} \mu(I) = 4\rho$. We will show that μ is a fractional colouring of $K(r,s)^G$.

For a function $h \in V(K(r,s)^G)$, let G_h be the subgraph of G induced by

$$V(G_h) = \{ x \in V(G) : |h(x) \cap (\cup_{x \to y} h(y))| \le \frac{r}{2} \}.$$

For every $x \in V(G_h)$, we can select a set $A(x) \subseteq h(x)$ such that $|A(x)| = \lceil \frac{r}{2} \rceil$ and $A(x) \cap h(y) = \emptyset$ for all $x \to y$ in G. The map $\psi : G_h \mapsto K(\lceil \frac{r}{2} \rceil, s)$ defined by $\psi(x) = A(x)$ is a homomorphism, therefore $\chi_f(G_h) \le \frac{2s}{r} \le \frac{\chi_f(G)}{2}$. Since the restriction of ν to $V(G_h)$ is a fractional clique of G_h , we then have $\sum_{x \in V(G_h)} \nu(x) \le \frac{\chi_f(G)}{2}$. Therefore

$$\begin{split} \sum_{h \in I} \mu(I) &= \sum_{x \in V(G)} \sum \Bigl\{ \mu(I(x,k)) : k \in h(x) \cap h(y) \text{ for some } x \to y \Bigr\} \\ &\geq \sum_{x \not\in V(G_h)} \sum \Bigl\{ \frac{4}{r \cdot \chi_f(G)} \cdot \nu(x) : k \in h(x) \cap h(y) \text{ for some } x \to y \Bigr\} \\ &\geq \sum_{x \not\in V(G_h)} \frac{4}{r \cdot \chi_f(G)} \cdot \nu(x) \cdot \frac{r}{2} \\ &\geq \frac{4}{r \cdot \chi_f(G)} \cdot \frac{\chi_f(G)}{2} \cdot \frac{r}{2} = 1. \end{split}$$

This shows that μ is a fractional colouring of $K(r,s)^G$ of weight 4ρ , and concludes the proof of Theorem 1.

4. The fractional Poljak-Rödl function

In this section, we consider the fractional analogue of the Poljak–Rödl function presented in the introduction:

$$\phi_f(x) = \inf\{\chi_f(G \times H) : G, H \text{ are directed graphs and } \chi_f(G) \ge \chi_f(H) \ge x\}.$$

The best possible bound for the fractional chromatic number of a categorical product of directed graphs in terms of the fractional chromatic numbers of its factors is therefore

$$\chi_f(G \times H) \ge \phi_f(\min\{\chi_f(G), \chi_f(H)\}).$$

We will show that this bound is essentially linear:

Theorem 3.
$$\frac{\phi_f(x)}{x}$$
 converges to $c = \inf\{\frac{\phi_f(x)}{x}: x \ge 2\}$.

To prove this result, we introduce the *lexicographic product* G[H] of two directed graphs G and H: The vertex set of G[H] is $V(G) \times V(H)$, and $(u,v) \rightarrow (u',v')$ in G[H] if and only if u=u' and $v \rightarrow v'$, or $u \rightarrow u'$. There is a very simple formula expressing the fractional chromatic number of G[H] in terms of those of G and G:

Lemma 4 ([3]).
$$\chi_f(G[H]) = \chi_f(G) \cdot \chi_f(H)$$
.

(The result is stated only for undirected graphs in [3], but it is valid for directed graphs as well, since the orientation does not affect the structure of the independent sets.) In particular, for the transitive tournament T_n we have $\chi_f(G[T_n]) = n \cdot \chi_f(G)$.

Lemma 5. $\chi_f(G[T_n] \times H[T_n]) = n \cdot \chi_f(G \times H)$.

Proof. Let $\nu: G \times H \mapsto [0,1]$ be a fractional clique of weight $\chi_f(G \times H)$. We define the function $\nu': G[T_n] \times H[T_n] \mapsto [0,1]$ by

$$\nu'((u,x),(v,y)) = \begin{cases} \nu(u,v) \text{ if } x = y, \\ 0 \text{ otherwise.} \end{cases}$$

Let I be an independent set of $G[T_n] \times H[T_n]$. Then for every $(u, v) \in V(G \times H)$, there is at most one $x \in V(T_n)$ such that $((u, x), (v, x)) \in I$. Furthermore, the set

 $J = \{(u, v) \in V(G \times H) : \text{there exists } x \in V(T_n) \text{ such that } ((u, x), (v, x)) \in I\}$

is independent, since $(u',v') \to (u,v)$ in J would imply $((u',x'),(v',x')) \to ((u,x),(v,x))$ in I for some $x',x \in V(T_n)$. Therefore

$$\sum_{((u,x),(v,y))\in I} \nu'((u,x),(v,y)) \le \sum_{(u,v)\in J} \nu(u,v) \le 1.$$

This shows that ν' is a fractional clique of $G[T_n] \times H[T_n]$, whence $\chi_f(G[T_n] \times H[T_n]) \ge n \cdot \chi_f(G \times H)$.

To prove the converse inequality, we use the following

Claim. Let I be an independent set of $G \times H$ and S_I the subgraph of $G[T_n] \times H[T_n]$ induced by

$$V(S_I) = \{((u, x), (v, y)) \in V(G[T_n] \times H[T_n]) : (u, v) \in I\}.$$

Then S_I is *n*-colourable.

Proof of Claim. Put

$$J = \{(u, v) \in I : \text{there exists } (u', v) \in I \text{ such that } u' \to u\},$$

$$J' = \{(u, v) \in I : \text{there exists } (u, v') \in I \text{ such that } v' \to v\}.$$

We split I into the four sets $I_{\text{max}} = J \cap J'$, $I_1 = J' \setminus J$, $I_2 = J \setminus J'$ and $I_{\min} = I \setminus (J \cup J')$. We now define $c: S_I \mapsto \{1, \dots, n\}$ by

$$c((u, x), (v, y)) = \begin{cases} \max\{x, y\} & \text{if } (u, v) \in I_{\max}, \\ x & \text{if } (u, v) \in I_{1}, \\ y & \text{if } (u, v) \in I_{2}, \\ \min\{x, y\} & \text{if } (u, v) \in I_{\min}. \end{cases}$$

We show that c is an n-colouring of S_I . For $((u',x'),(v',y')) \to ((u,x),(v,y))$ in S_I , we have $(u',x') \to (u,x)$ in $G[T_n]$ and $(v',y') \to (v,y)$ in $H[T_n]$. Therefore u'=u or $u'\to u$ in G and v'=v or $v'\to v$ in H. If $u'\to u$, then since I is independent, we cannot have $v'\to v$, hence v'=v and y'< y. This implies that $(u,v)\in J$; moreover there cannot exist a vertex v'' in H such that $v''\to v'=v$ and $(u',v'')\in I$ (for otherwise we would have $(u',v'')\to (u,v)$ in I) hence $(u',v')\not\in J'$. We then have

$$c((u', x'), (v', y')) \le y' < y \le c((u, x), (v, y)).$$

Similarly, $v' \rightarrow v$ implies

$$c((u', x'), (v', y')) \le x' < x \le c((u, x), (v, y)).$$

The remaining possibility is u' = u, v' = v. We then have x' < x and y' < y. Since the functions max, min and the projections are all proper n-colourings of $T_n \times T_n$, we again have $c((u', x'), (v', y')) \neq c((u, x), (v, y))$. Therefore S_I is n-colourable, which proves our Claim.

Let $\mu: \mathcal{I}(G \times H) \mapsto [0,1]$ be a fractional colouring of $G \times H$. By the previous Claim, for any $I \in \mathcal{I}(G \times H)$, the set S_I can be partitioned into n sets $S_I(1), \ldots, S_I(n) \in \mathcal{I}(G[T_n] \times H[T_n])$. Thus we can define a fractional colouring $\mu': \mathcal{I}(G[T_n] \times H[T_n]) \mapsto [0,1]$ by putting $\mu'(S_I(i)) = \mu(I), i = 1, \ldots, n$. The weight of μ' is n times that of μ , therefore $\chi_f(G[T_n] \times H[T_n]) \leq n \cdot \chi_f(G \times H)$.

Proof of Theorem 3. The function ϕ_f is clearly nondecreasing, and by Lemmas 4, 5, we have $\phi_f(n \cdot x) \leq n \cdot \phi_f(x)$. It is well known that these conditions imply that $\frac{\phi_f(x)}{x}$ converges to $\inf\{\frac{\phi_f(x)}{x}: x \geq 2\}$.

The precise value of c remains to be determined; for the moment, only the bounds $\frac{1}{4} \le c \le \frac{2}{3}$ are known. Note that the fractional Poljak–Rödl function ϕ_f admits an undirected analog, which can also be shown to be essentially linear. However, no improvement on the bound of Theorem 1 is known for undirected graphs. It would be interesting to find a way to use the symmetry of the edges to improve this bound. The insight gained could even help to solve the non-fractional version of the problem.

Added in Proof. We learned that Theorem 2 has also been obtained by S. Bessy and S. Thomassé.

References

[1] D. Duffus and N. Sauer: Lattices arising in categorial investigations of Hedetniemi's conjecture, *Discrete Math.* **152** (1996), 125–139.

- [2] M. EL-ZAHAR and N. SAUER: The chromatic number of the product of two 4-chromatic graphs is 4, *Combinatorica* 5 (1985), 121–126.
- [3] G. GAO and X. ZHU: Star-extremal graphs and the lexicographic product, *Discrete Math.* **152** (1996), 147–156.
- [4] S. POLJAK: Coloring digraphs by iterated antichains, *Comment. Math. Univ. Carolin.* **32** (1991), 209–212.
- [5] S. POLJAK and V. RÖDL: On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B 31 (1981), 339–350.
- [6] N. Sauer: Hedetniemi's conjecture a survey, Discrete Math. 229 (2001), 261–292.
- [7] E. R. SCHEINERMAN and D. H. ULLMAN: Fractional Graph Theory, Wiley– Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1997, xviii+211 pp.
- [8] C. Tardif: The chromatic number of the product of two graphs is at least half the minimum of the fractional chromatic numbers of the factors, *Comment. Math. Univ. Carolin.* **42** (2001), 353–355.
- [9] C. Tardif: Chromatic numbers of products of tournaments: Fractional aspects of Hedetniemi's conjecture; preprint, 2001, 7 pages ms.
- [10] C. TARDIF and X. Zhu: The level of nonmultiplicativity of graphs, *Discrete Math.* **244** (2002), 461–471.
- [11] X. Zhu: A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998), 1–24.
- [12] X. Zhu: The fractional chromatic number of the direct product of graphs, Glasg. Math. J. 44 (2002), 103–115.

Claude Tardif

Department of Mathematics and Computer Science Royal Military College of Canada P.O.Box 17000, Station "Forces" Kingston, Ontario K7K-7B4 Canada

Claude.Tardif@rmc.ca